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Why investigating lightning in hurricanes ?

*Observations suggests that hurricane eyewall total lightning flash
rate is often accompanied by rapid intensification (RI) of the system
(e.g., Molinari’'s, Price et al.).

s 5

' 21 Sep 05 16:00-17:00 UTC >
L

(light grey shading)

unts per hour

Lightning co

;T.l‘llw”\"w:?l s 20km

Lt R

&2 h H'n J

S é , '
21 22 = 24 s
= 2%050921 160000

Katrina 28 Aug 05 16:30-17:30 UTC

ANDFALL

r (light grey shading)

Katrina

counts per hou

Lightning

26 27 28 29
Days in Aug. 2005

Shao et al. (2006)



Scientific goals ctd..:

*Therefore a natural question to ask Is:

Can lightning data be used as a forecast tool within

NW
*10°’s of t

P models to better predict Rl in real time?

nausands of LASA lightning waveforms for 3

major hurricanes were manually analyzed to provide a
best estimate of the observed total eyewall lightning
evolution for those storms during RI.

*The following lightning attributes were determined:

-Spatial distribution (geolocation)

-Polarity and type
-Discharge heights



LASA network in a nutshell

*The LASA station arrays consists of 2 groups of (VLF)
stations located in the Great Plains and in Northern Florida:

*Which for storms undergomg Rl in the Central Gulf is |deal In
terms of more accurate lightning geo-location (Time of Arrival
algorithm).



Observations: Results
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RITA: Relationship between convective

Height = 3.2 km |
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Burst labeled C

For a period of 12 min -
|IC flashes are found to
rotate around the eye

*|C flashes collocated with
highest radar reflectivity at
z=3 km

— IC flashes can be use
to map individual hot
towers during Rl — IC
give crucial information on
core internal convective
structure/state during Rl




RITA: 3D view reflectivity at 1915 Z (burst C)

«30 dBZ echo
Isosurface of lower
fuselage aircraft in
Situ data

Side View

*Northern portion of the
eyewall as suggested
by IC flash has deeper
reflectivity cores and
thus updrafts




Rita: Snapshot 3D view near that time..

21 September 1615-1745UTC
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Little-no vertical tilt of CG and IC = Little

lateral displacement of charge layers in
eyewall convection.




Katrina: second sets of IC bursts:

Brlghtness temperature ii

«Convection remains on the south side of the storm
and follows storm track. Heights shows net 3 km rise.
*|C lightning also helps in diagnosing difference in
convective regimes.
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Model set-up in a flash...

5 bulk
microphysical/hydrometeor
species coupled with
charging/discharge model

*No distinction between CG/IC.
-Base state thermodynamic /
Kinematic environment provided
by ECMWEF sounding.

Vertical grid stretching from
dz=50 m at the bottom to

e J

Jortex Initalized 'E):))/ Pr(1rl[|1c'1lging In a bogus vortex on a 4 km grid.

«Convection in the vortex in 4 km run was hastened during first 12 h
using 2D composite Doppler radar data (storm core) from Key West
(BYX) and 2D lightning from LASA (outer rainbands).

4 km simulation ran for 38h. Then 2 km run restarted at 30h

2 km ran for 8h with dt=0.25s on 32000 processors (ORNL)




Lightning / Storm Intensity — Model vs Obs.

35

*Observations
suggest that IC/CG
‘ L o10 bursts precede
‘ | ! Rita’s intensification.
‘ *Model produced
|\||\| eyewall lightning
burst at 5-6h
followed by a ~5 hPa
pressure drop.
*This lightning burst
IS associated with a
notable uptake In
eyewall updraft
mass flux or

convective burst as
suggested by obs.
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Radar reflectivity (z = 1km) / lightning discharges:

*Model does reasonable job in reproducing Rita’s track, intensity
evolution and structure and especially in maintaining a relatively
small eye size (~30 km vs 15 km for obs)

*Episodic lightning bursts evident in the eyewall often associated
with localized dBZ maxima.

Burst at 5h associated with 3 distinct hot towers-

-Comparably little lightning in the rainbands consistent with obs.




Closer view of the eyewall bursts at 5 h:
/-9 km layer-averaged vertical velocities/lightning

Example 1

4 h 55 min 5 h 10 min Made of electrically

" active convective
elements rotating
around the eyewall
Example 1 occurs
during the onset of W
flux increase.
*Rotation speed less
than tangential flow of
primary circulation,
similar to LASA
observations.
*|C heights showed
no increase with time
In contrast to obs.




Closer view of the eyewall convection:

Vertical X-Z cross sections.

Net space charge (nC/m3) and LWC (g/m3)

Example 1 Example 2

{| Red = positive 5 h 20 min - 7 h 50 min
|| Blue = negative

" _440  —-400 -360  -320 -520 -480 —440 —400 -360 —320

Space charge of graupel, cloud ice and snow (10*nC/m3)

-320 520 -480 -440 -400 -360 -320
X (km)

Simulated charge
structure resembles an
Inverted tripole-while
obs had normal tripole.
*Most charging occurs
within the inner eyewall
convection between 10-
14 km atop updraft
cores where graupel
and LWC are found
together.

*Neg charge by non-
Inductive charging of
graupel

*Pos charge carried by
Ice crystals/snow

Simulated space charge of:
graupel (10*nC m-3, blue shading),

cloud ice (10*nC m-3 black contours)
snow (10*nC m-3 red contours)







Manual analysis summary

*Ten’s of thousands of lightning waveforms
recorded by LASA were analyzed for Hurricane
Rita, Katrina (2005) and Charley (2004) focusing
on periods of RI.

*The lightning data only focused on the storm
iInner core or eyewall. Why? Because key in storm
iIntensification lies in small-scale internal core
dynamics.

*Heights could only be determined for a particular
class of intense (~20 kA) in-cloud lightning
discharge called Narrow Bipolar Events (NBE).



What Is a NBE ?

* A particular type of invisible intense
|C discharge of short (10 ys) duration
which physics are up-to-date
unknown.

*Often observed within severe
convection (such as tornadic
supercells or MCS).
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Mapping CG and IC: Katrina vs Rita

Red = intra-cloud flash

Blue = cloud-to-ground flash

Katrina



Lightning time series for Rita/Katrina
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NBE discharge heights evolution for Rita/Katrina
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«Similar results are found for Charley




Rita: One more convective burst example...

D 20050921 20:36-21:12Z

-86.50

Vic =63ms’! Time (UTC)
V-|0 =75m s

Deye= 28km : 20:54 21:12

V¢ = Intra-cloud lightning rotation speed
V,o = 10-m maximum sustained wind from NHC
D...= Eye diameter




Charley
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*Again, similar behavior seen for Charley




Katrina: NRL Satellite- NOAA Doppler radar imageries :
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*Deep convection present on
the southern portion of the
eyewall 4h before and 5h after
observations.




Obs: Conclusions

Total lightning data was manually analyzed for 3 Atlantic
major hurricanes and showed:

*An increase in CG and IC flash rate during the onset of
RI

A large increase in CG flash rate during period of max
Intensity

*An increase in NB discharge heights during onset of RI
or intensification

*|C flash along with radar data allows one to track
iIndividual convective events (or hot tower bursts) in the
eyewall.

*— Lightning (particularly IC flashes) can be used to fill In
the voids of radar data for a better representation of storm
core internal convective structure for use Iin data

assimilation procedures (EnKF, 4ADVAR etc..).



4 km run used to provide reasonable Initial Conditions for 2 km run

Modeled track for 4 km run LASA lightning

== 20 Sep 1200UTC
== 20 Sep 1500UTC

— TPC bESt track 20 Sep 1800UTC
Simulation 20 Sep 2100UTC

22/03Z
“Seetea. 20/18Z¢

-Abundant rainband lightning in LASA data help to initialize bands
and achieve a better balance between eyewal/rainband convection.
*Modeled Track matches obs reasonably well.

Simulated storm intensity at time of restart of 2 km run
(30h=21/192) is ~915 hPa vs 908 hPa for obs.




Closer view of the eyewall convection:
3D view of the burst:

5h 00min . 5h 15min

/” L

5h 45mi

*Red dot = flashes
*White isosurface = Cloud mixing ratio of 1 g/kg.




Parameterizing charge separation in a microphysical model

(&)
Before Before After

Non-inductive Inductive

= iIndependent E dependent

Graupel-ice collision| |Graupel-droplet collision




Non-inductive charging: Example

The charging rate and the sign acquired by the rimer
(graupel) depends on:

AND Effective LWC (Saunders 91)

AND

\ 4

Ambient temperature LWC (Gardiner)

AND

Riming Accretion Rate
(Saunders and Peck 98, RR Mansell scheme 2000)

Saunders
and Peck (1998)

Temperature ‘C



Mapping various lightning types

1

(c) Charley

|




3D movie
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Simulated vertical/azimuthal structure vs obs

Simulation
o °

” ‘ Radius (km)

Simulated eye size reasonable-

«Simulated 15,20,25 dBZ echo top in good agreement with obs.

Eyewall width and hence slope, overestimated (eye/eyewall evaporation and/or
surface friction)




Center: 26.32°N 88.71° W Center: 26.75°N 89.03" W
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NOAA Aircraft Tail Doppler Radar

olittle lightning in the rainbands compared to the eyewall at
about the same time during RI.




Proxies/surrogates for lightning for use in operational models

(a) 4 km simulation (b) 2 km simulation
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Lightning flash in model for both 2 and 4 km simulation
associated with 2-4 m/s updraft speed, ~100 K/h latent heating
(mainly from condensation/freezing) and water and ice super-
saturation on the order of 0.5 g/kg.




5-7 km layer averaged simulated vertical velocity (m/s)




